Issue 28, 2011

Molecular mass dependence of adsorbed amount and hydrodynamic thickness of polyelectrolyte layers

Abstract

Highly charged polyelectrolytes adsorbed on oppositely charged colloidal particles are investigated by electrophoresis and dynamic light scattering. The dependence of the adsorbed amount and of the hydrodynamic layer thickness on the molecular mass and the salt level is analyzed. The adsorbed amount increases with increasing salt level and decreases with increasing molecular mass. The hydrodynamic layer thickness is independent of the molecular mass at low salt levels, but increases with the molecular mass as a power law with an exponent 0.10 ± 0.01 at high salt. The same behavior was observed for different polyelectrolytes and substrates and therefore is suspected to be generic. Due to semi-quantitative agreement with computer simulations carried out by Kong and Muthukumar in 1998, the observed behavior is interpreted with conformational changes of single adsorbed polyelectrolyte chains.

Graphical abstract: Molecular mass dependence of adsorbed amount and hydrodynamic thickness of polyelectrolyte layers

Supplementary files

Article information

Article type
Communication
Submitted
07 Mar 2011
Accepted
07 Jun 2011
First published
20 Jun 2011

Phys. Chem. Chem. Phys., 2011,13, 12716-12719

Molecular mass dependence of adsorbed amount and hydrodynamic thickness of polyelectrolyte layers

E. Seyrek, J. Hierrezuelo, A. Sadeghpour, I. Szilagyi and M. Borkovec, Phys. Chem. Chem. Phys., 2011, 13, 12716 DOI: 10.1039/C1CP20654K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements