Issue 39, 2011

Amino acid-based ionic liquids: using XPS to probe the electronic environment via binding energies

Abstract

Here we report the synthesis and characterisation by X-ray photoelectron spectroscopy (XPS) of eight high purity amino acid-based ionic liquids (AAILs), each containing the 1-octyl-3-methylimidazolium, [C8C1Im]+, as a standard reference cation. All expected elements were observed and the electronic environments of these elements identified. A fitting model for the carbon 1s region of the AAILs is reported; the C aliphatic component of the cation was used as an internal reference to obtain a series of accurate and reproducible binding energies. Comparisons are made between XP spectra of the eight AAILs and selected non-functionalised ionic liquids. 1-octyl-3-methylimidazolium acetate was also studied as a model of the carboxyl containing amino acid anion. The influence of anionic substituent groups on the measured binding energies of all elements is presented, and communication between anion and cation is investigated. This data is interpreted in terms of hard and soft anions and compared to the Kamlet–Taft hydrogen bond acceptor ability, β, for the ionic liquids. A linear correlation is presented which suggests that the functional side chain, or R group, of the amino acid has little impact upon the electronic environment of the charge-bearing moieties within the anions and cations studied.

Graphical abstract: Amino acid-based ionic liquids: using XPS to probe the electronic environment via binding energies

Supplementary files

Article information

Article type
Paper
Submitted
31 May 2011
Accepted
12 Aug 2011
First published
07 Sep 2011

Phys. Chem. Chem. Phys., 2011,13, 17737-17748

Amino acid-based ionic liquids: using XPS to probe the electronic environment via binding energies

B. B. Hurisso, K. R. J. Lovelock and P. Licence, Phys. Chem. Chem. Phys., 2011, 13, 17737 DOI: 10.1039/C1CP21763A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements