Issue 37, 2011

Visible and ultraviolet spectroscopy of gas phase protein ions

Abstract

Optical spectroscopy has contributed enormously to our knowledge of the structure and dynamics of atoms and molecules and is now emerging as a cornerstone of the gas phase methods available for investigating biomolecular ions. This article focuses on the UV and visible spectroscopy of peptide and protein ions stored in ion traps, with emphasis placed on recent results obtained on protein polyanions, by electron photodetachment experiments. We show that among a large number of possible de-excitation pathways, the relaxation of biomolecular polyanions is mainly achieved by electron emission following photo-excitation in electronically excited states. Electron photodetachment is a fast process that occurs prior to relaxation on vibrational degrees of freedom. Electron photodetachment yield can then be used to record gas phase action spectra for systems as large as entire proteins, without the limitation of system size that would arise from energy redistribution on numerous modes and prevent fragmentation after the absorption of a photon. The optical activity of proteins in the near UV is directly related to the electronic structure and optical absorption of aromatic amino acids (Trp, Phe and Tyr). UV spectra for peptides and proteins containing neutral, deprotonated and radical aromatic amino acids were recorded. They displayed strong bathochromic shifts. In particular, the results outline the privileged role played by open shell ions in molecular spectroscopy which, in the case of biomolecules, is directly related to their reactivity and biological functions. The optical shifts observed are sufficient to provide unambiguous fingerprints of the electronic structure of chromophores without the requirement of theoretical calculations. They constitute benchmarks for calculating the absorption spectra of chromophores embedded in entire proteins and could be used in the future to study biochemical processes in the gas phase involving charge transfer in aromatic amino acids, such as in the mediation of electron transfer or redox reactions. We then addressed the important question of the sensitivity of protein optical spectra to the intrinsic properties of protein ions, including conformation, charge state, etc., and to environmental factors. We report optical spectra for different charge states of insulin, for ubiquitin starting from native and denaturated solutions, and for apo-myoglobin protein. All these spectra are compared critically to spectra recorded in solution, in order to assess solvent effects. We also report the spectra of peptides complexed with metal cations and show that complexation gives rise to new optical transitions related to charge transfer types of excitation. The perspectives of this work include integrative approaches where UV-Vis spectroscopy could, for example, be combined with ion mobility spectrometry and high level calculations for protein structural characterization. It could also be used in spectroscopy to probe biological processes in the gas phase, with different light sources including VUV radiation (to probe different types of excitations) and ultra short pulses with time and phase modulation (to probe and control the dynamics of de-excitation or charge transfer events), and with the derivatization of proteins with chromophores to modulate their optical properties. We also envision that photo-excitation will play an important role in the future to produce intermediates with new chemical and reactive properties. Another promising route is to conduct activated electron photodetachment dissociation experiments.

Graphical abstract: Visible and ultraviolet spectroscopy of gas phase protein ions

Article information

Article type
Perspective
Submitted
12 May 2011
Accepted
11 Jul 2011
First published
02 Aug 2011

Phys. Chem. Chem. Phys., 2011,13, 16494-16509

Visible and ultraviolet spectroscopy of gas phase protein ions

R. Antoine and P. Dugourd, Phys. Chem. Chem. Phys., 2011, 13, 16494 DOI: 10.1039/C1CP21531K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements