Issue 35, 2011

Structural models for yttrium aluminium borate laser glasses: NMR and EPR studies of the system (Y2O3)0.2–(Al2O3)x–(B2O3)0.8−x

Abstract

The structure of laser glasses in the system (Y2O3)0.2{(Al2O3)x)(B2O3)0.8−x} (0.15 ≤ x ≤ 0.40) has been investigated by means of 11B, 27Al, and 89Y solid state NMR as well as electron spin echo envelope modulation (ESEEM) of Yb-doped samples. The latter technique has been applied for the first time to an aluminoborate glass system. 11B magic-angle spinning (MAS)-NMR spectra reveal that, while the majority of the boron atoms are three-coordinated over the entire composition region, the fraction of three-coordinated boron atoms increases significantly with increasing x. Charge balance considerations as well as 11B NMR lineshape analyses suggest that the dominant borate species are predominantly singly charged metaborate (BO2/2O), doubly charged pyroborate (BO1/2(O)2), and (at x = 0.40) triply charged orthoborate groups. As x increases along this series, the average anionic charge per trigonal borate group increases from 1.38 to 2.91. 27Al MAS-NMR spectra show that the alumina species are present in the coordination states four, five and six, and the fraction of four-coordinated Al increases markedly with increasing x. All of the Al coordination states are in intimate contact with both the three- and the four-coordinate boron species and vice versa, as indicated by 11B/27Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, non-segregated glass structure. 89Y solid state NMR spectra show a significant chemical shift trend, reflecting that the second coordination sphere becomes increasingly “aluminate-like” with increasing x. This conclusion is supported by electron spin echo envelope modulation (ESEEM) data of Yb-doped glasses, which indicate that both borate and aluminate species participate in the medium range structure of the rare-earth ions, consistent with a random spatial distribution of the glass components.

Graphical abstract: Structural models for yttrium aluminium borate laser glasses: NMR and EPR studies of the system (Y2O3)0.2–(Al2O3)x–(B2O3)0.8−x

Article information

Article type
Paper
Submitted
03 May 2011
Accepted
13 Jul 2011
First published
03 Aug 2011

Phys. Chem. Chem. Phys., 2011,13, 16071-16083

Structural models for yttrium aluminium borate laser glasses: NMR and EPR studies of the system (Y2O3)0.2–(Al2O3)x–(B2O3)0.8−x

H. Deters, J. F. de Lima, C. J. Magon, A. S. S. de Camargo and H. Eckert, Phys. Chem. Chem. Phys., 2011, 13, 16071 DOI: 10.1039/C1CP21404G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements