Theoretical characterization of laser- and sympathetically-cooled ions in surface-electrode ion traps
Abstract
Using molecular dynamics simulations we characterize theoretically Coulomb clusters of laser- and sympathetically-cooled ions in a five-wire surface-electrode ion trap. We show that the asymmetry of the trapping potential leads to significantly different cluster structures and ion energy distributions in comparison to conventionally used linear Paul traps and to an asymmetric segregation of the ions in bi-component Coulomb clusters. We explore the impact of our results on the implementation of sympathetic cooling of molecular ions in surface-
- This article is part of the themed collection: Physics and chemistry of cold molecules