Issue 24, 2011

Terahertz spectroscopy of enantiopure and racemic polycrystalline valine

Abstract

Experimental and computational THz (or far-infrared) spectra of polycrystalline valine samples are reported. The experimental spectra have been measured using THz time-domain spectroscopy. Spectra of the pure enantiomers, both D and L, as well as the DL racemate have been taken at room temperature and low temperature (78 K). The spectra of the pure D and L enantiomers are essentially identical, and they are markedly different from the DL racemate. In addition, a temperature-dependent study of L-valine was undertaken in which the absorption maxima were found to red shift as a function of increasing temperature. The vibrational absorption spectra (frequencies and intensities) were calculated using the harmonic approximation with the Perdew–Burke–Ernzerhof (PBE) functional, localized atomic orbital basis sets, and periodic boundary conditions. The calculated and experimental spectra are in good qualitative agreement. A general method of quantifying the degree to which a calculated mode is intermolecular versus intramolecular is demonstrated, with the intermolecular motions further separated into translational versus rotational/librational motion. This allows straightforward comparison of spectra calculated using different basis sets or other constraints.

Graphical abstract: Terahertz spectroscopy of enantiopure and racemic polycrystalline valine

Supplementary files

Article information

Article type
Paper
Submitted
02 Mar 2011
Accepted
28 Apr 2011
First published
20 May 2011

Phys. Chem. Chem. Phys., 2011,13, 11719-11730

Terahertz spectroscopy of enantiopure and racemic polycrystalline valine

M. R. C. Williams, A. B. True, A. F. Izmaylov, T. A. French, K. Schroeck and C. A. Schmuttenmaer, Phys. Chem. Chem. Phys., 2011, 13, 11719 DOI: 10.1039/C1CP20594C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements