Issue 22, 2011

Kirkwood correlation factors in liquid mixtures from an extended Onsager–Kirkwood–Fröhlich equation

Abstract

Two approaches for applying the Onsager–Kirkwood–Fröhlich equation to liquid mixtures are revisited at the light of recent developments leading to the estimation of relative permittivities and refractive indices of thermodynamically ideal liquid mixtures. From the one-liquid approach, the squared permanent dipole moment of the mixture molecular-equivalent species M is demonstrated to be a mole-fraction average of squared permanent dipole moments of the components. An expression is obtained for calculating the ideal Kirkwood correlation factor of M at any composition by using only pure-constituent properties. From the two-liquid approach (Böttcher's equation), equations are obtained to describe the dependence on composition of the Kirkwood correlation factor of both components in the ideal mixture, even in mixtures of Onsager liquids. This dependency is tentatively ascribed to London dispersion forces acting between unlike molecules. It is demonstrated that Böttcher's equation can only be applied to mixtures where the relative permittivity of each component is larger than the squared refractive index of the other component. From the interplay of one- and two-liquid approaches, the ideal Kirkwood correlation factor of M and of both constituents are inter-related. Thermodynamic expressions are given for the calculation of excess Kirkwood correlation factors. In the case where permanent dipole moments are unknown, the ratio excess/ideal, termed the relative excess Kirkwood correlation factor for components and species M can still be evaluated. These ratios are related to more conventional excess properties. Density, relative permittivity and refractive index data are reported for binary mixtures of 2,2,2-trifluoroethanol with mono-, di-, tri- or tetra-glyme over the whole composition range at 288 K and 298 K. For these systems, ideal, excess and relative excess and Kirkwood correlation factors are calculated and discussed. In particular, by regarding Kirkwood correlation factors as a measure of order/molecular organisation in liquid mixtures, it is found that the formation of ideal mixtures entails a decrease of order which, for the present binary systems, is almost cancelled out upon passage to the corresponding real mixtures. It is concluded that the present formulation permits to estimate Kirkwood correlation factors of each constituent of liquid mixtures and thereby to draw information on their molecular organisation.

Graphical abstract: Kirkwood correlation factors in liquid mixtures from an extended Onsager–Kirkwood–Fröhlich equation

Supplementary files

Article information

Article type
Paper
Submitted
16 Jan 2011
Accepted
05 Apr 2011
First published
04 May 2011

Phys. Chem. Chem. Phys., 2011,13, 10670-10680

Kirkwood correlation factors in liquid mixtures from an extended Onsager–Kirkwood–Fröhlich equation

J. C. R. Reis and T. P. Iglesias, Phys. Chem. Chem. Phys., 2011, 13, 10670 DOI: 10.1039/C1CP20142E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements