Issue 3, 2011

Spin relaxation of a short-lived radical in zero magnetic field

Abstract

A short-lived radical containing only one I = 1/2 nucleus, the muoniated 1,2-dicarboxyvinyl radical dianion, was produced in an aqueous solution by the reaction of muonium with the dicarboxyacetylene dianion. The identity of the radical was confirmed by measuring the muon hyperfine coupling constant (hfcc) by transverse field muon spin rotation spectroscopy and comparing this value with the hfcc obtained from DFT calculations. The muon spin relaxation rate of this radical was measured as a function of temperature in zero magnetic field by the zero field muon spin relaxation technique. The results have been interpreted using the theoretical model of Fedin et al. (J. Chem. Phys., 2003, 118, 192). The muon spin polarization decreases exponentially with time after muon implantation and the temperature dependence of the spin relaxation rate indicates that the dominant relaxation mechanism is the modulation of the anisotropic hyperfine interaction due to molecular rotation. The effective radius of the radical in solution was determined to be 1.12 ± 0.04 nm from the dependence of the muon spin relaxation rate on the temperature and viscosity of the solution, and is approximately 3.6 times larger than the value obtained from DFT calculations.

Graphical abstract: Spin relaxation of a short-lived radical in zero magnetic field

Article information

Article type
Paper
Submitted
16 Jul 2010
Accepted
07 Oct 2010
First published
15 Nov 2010

Phys. Chem. Chem. Phys., 2011,13, 1168-1173

Spin relaxation of a short-lived radical in zero magnetic field

I. McKenzie, Phys. Chem. Chem. Phys., 2011, 13, 1168 DOI: 10.1039/C0CP01216E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements