Issue 11, 2011

Chemical amplification for in-gel DNA detection

Abstract

We report the use of reversible addition–fragmentation chain transfer (RAFT) polymerization as a highly efficient chemical amplification means to direct visualization of DNA in porous polyacrylamide gel. It is the first time that a dynamic polymer growth on the surface of soft medium is used in signal amplification for DNA detection. In the proof-of-concept experiment, a thin acrylamide gel on a glass microscope slide formed a thin layer of uniformly crosslinked network with porous structures. Oligonucleotides of different sequences were entrapped within the gel at separate spots. Hybridization of complementary DNA detection probes introduced chain transfer agents (CTAs) into the gel via preconjugation to the probes. Surface-initiated polymer growth was prompted on the gel surface and the growth of polymer brushes at the spot where DNA hybridization occurred was monitored using infrared spectroscopy and atomic force microscopy. Visible change in the texture of the porous gel occurred after polymer growth, which offered an attractive detection alternative for in-gel DNA analysis. Compared to the results from traditional ethidium bromide staining, better detection sensitivity and specificity were achieved.

Graphical abstract: Chemical amplification for in-gel DNA detection

Article information

Article type
Communication
Submitted
17 Aug 2011
Accepted
06 Sep 2011
First published
07 Oct 2011

Anal. Methods, 2011,3, 2463-2468

Chemical amplification for in-gel DNA detection

P. He, E. Z. Tucker, C. B. Gorman and L. He, Anal. Methods, 2011, 3, 2463 DOI: 10.1039/C1AY05514C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements