Issue 9, 2011

Application of 2-(3,4-dihydroxyphenyl)-1,3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid

Abstract

The electrooxidation of dopamine (DA), uric acid (UA) and their mixture on a gold electrode modified by a self-assembled monolayer of 2-(3,4-dihydroxyphenyl)-1,3-dithialone has been studied by cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV). CV was used to investigate the redox properties of the modified electrode at various scan rates and the apparent charge transfer rate constant (ks), and transfer coefficient (α) were calculated. The mediated oxidation of DA at the modified electrode under the optimum condition (pH = 7.0) in CV occurs at a potential about 220 mV less positive than that of the unmodified gold electrode. The values of electron transfer coefficients (α), catalytic rate constant (k) and diffusion coefficient (D) were calculated for DA, using electrochemical methods. DPV exhibited a linear dynamic range over the concentration range of 0.2–250.0 μM and a detection limit (3σ) of 0.07 μM for DA. The modified electrode was used for simultaneous determination of DA and UA by DPV. The results showed that the electrode is highly efficient for the catalytic electrooxidation of DA and UA, leading to a remarkable peak resolution (∼350 mV) for two compounds. The electrode was used for the determination of DA in an injection sample.

Graphical abstract: Application of 2-(3,4-dihydroxyphenyl)-1,3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid

Article information

Article type
Paper
Submitted
25 Oct 2010
Accepted
16 Feb 2011
First published
09 Mar 2011

Analyst, 2011,136, 1965-1970

Application of 2-(3,4-dihydroxyphenyl)-1,3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid

M. Mazloum-Ardakani, H. Beitollahi, M. K. Amini, F. Mirkhalaf, B. Mirjalili and A. Akbari, Analyst, 2011, 136, 1965 DOI: 10.1039/C0AN00823K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements