Issue 13, 2011

Multivariate analysis of emission decay matrices for distinguishing ground state heterogeneity and excited state reactions of tryptophan

Abstract

The amino acid tryptophan displays emission solvatochromism, an emission maximum that shifts with solvent polarity, which is often used in protein studies to indicate local environment hydrophobicity. Use of tryptophan solvatochromism in time-resolved protein studies has traditionally been complicated due to the undescribed photokinetics that result in a characteristic multiexponential emission decay. For the first time, by application of the photokinetic matrix decomposition (PMD) multivariate curve resolution method to time-resolved emission decay (TRED) data, a distinguishment between ground state heterogeneous (GSH) and excited state reaction (ESR) type photokinetics of tryptophan in solution is made possible. It is found that molecular tryptophan displays two emission spectra that decay independently, suggesting GSH type photokinetics, one at 347 nm with a lifetime of 0.5 ns and one at 363 nm with a lifetime of 3.1 ns. When tryptophan is incorporated into a peptide, mastoparan X, the data similarly contain two emission spectra that decay independently, but are shifted in wavelength. Photobleaching experiments confirm that the PMD method is sensitive to tryptophan emission quenching, and therefore may be applied to determine the photokinetics of tryptophan that occur in proteins. Future applications of PMD analysis of tryptophan TRED data as a bioanalytical tool for further characterizing dynamic protein processes are discussed.

Graphical abstract: Multivariate analysis of emission decay matrices for distinguishing ground state heterogeneity and excited state reactions of tryptophan

Article information

Article type
Paper
Submitted
08 Apr 2011
Accepted
25 Apr 2011
First published
31 May 2011

Analyst, 2011,136, 2770-2774

Multivariate analysis of emission decay matrices for distinguishing ground state heterogeneity and excited state reactions of tryptophan

C. A. Roach, Analyst, 2011, 136, 2770 DOI: 10.1039/C1AN15293A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements