Issue 7, 2011

High-sensitivity visualisation of contaminants in heparin samples by spectral filtering of 1H NMR spectra

Abstract

A novel application of two-dimensional correlation analysis has been employed to filter 1H NMR heparin spectra distinguishing acceptable natural variation and the presence of foreign species. Analysis of contaminated heparin samples, compared to a dataset of accepted heparin samples using two-dimensional correlation spectroscopic analysis of their 1-dimensional 1H NMR spectra, allowed the spectral features of contaminants to be recovered with high sensitivity, without having to resort to more complicated NMR experiments. Contaminants, which exhibited features distinct from those of heparin and those with features normally hidden within the spectral mass of heparin could be distinguished readily. A heparin sample which had been pre-mixed with a known contaminant, oversulfated chondroitin sulfate (OSCS), was tested against the heparin reference library. It was possible to recover the 1H NMR spectrum of the OSCS component through difference 2D-COS power spectrum analysis of as little as 0.25% (w/w) with ease, and of 2% (w/w) for more challenging contaminants, whose NMR signals fell under those of heparin. The approach shows great promise for the quality control of heparin and provides the basis for greatly improved regulatory control for the analysis of heparin, as well as other intrinsically heterogeneous and varied products.

Graphical abstract: High-sensitivity visualisation of contaminants in heparin samples by spectral filtering of 1H NMR spectra

Supplementary files

Article information

Article type
Paper
Submitted
28 Oct 2010
Accepted
06 Jan 2011
First published
31 Jan 2011

Analyst, 2011,136, 1390-1398

High-sensitivity visualisation of contaminants in heparin samples by spectral filtering of 1H NMR spectra

T. R. Rudd, D. Gaudesi, M. A. Lima, M. A. Skidmore, B. Mulloy, G. Torri, H. B. Nader, M. Guerrini and E. A. Yates, Analyst, 2011, 136, 1390 DOI: 10.1039/C0AN00835D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements