Issue 17, 2010

Measurement of nonlinear rheology of cross-linked biopolymer gels

Abstract

One of the hallmarks of biopolymer gels is their nonlinear viscoelastic response to stress, making the measurement of the mechanics of these gels very challenging. Various rheological protocols have been proposed for this; however, a thorough understanding of the techniques and their range of applicability as well as a careful comparison between these methods are still lacking. Using both strain ramp and differential prestress protocols, we investigate the nonlinear response of a variety of systems ranging from extracellular fibrin gels to intracellular F-actin solutions and F-actin cross-linked with permanent and physiological transient linkers. We find that the prestress and strain ramp results agree well for permanently cross-linked networks over two decades of strain rates, while the protocols only agree at high strain rates for more transient networks. Surprisingly, the nonlinear response measured with the prestress protocol is insensitive to creep; although a large applied steady stress can lead to significant flow, this has no significant effect on either the linear or nonlinear response of the system. A simple model is presented to provide insight into these observations.

Graphical abstract: Measurement of nonlinear rheology of cross-linked biopolymer gels

Article information

Article type
Paper
Submitted
23 Apr 2010
Accepted
17 Jun 2010
First published
07 Jul 2010

Soft Matter, 2010,6, 4120-4127

Measurement of nonlinear rheology of cross-linked biopolymer gels

C. P. Broedersz, K. E. Kasza, L. M. Jawerth, S. Münster, D. A. Weitz and F. C. MacKintosh, Soft Matter, 2010, 6, 4120 DOI: 10.1039/C0SM00285B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements