Issue 1, 2010

Synthetic hydrogels for controlled stem cell differentiation

Abstract

Stem cells offer great promise for regenerative medicine because of their pluripotency and their ability for self-renewal; however, their use in clinical treatments requires knowledge of the cues that control stem cell fate in vivo, and the ability to recapitulate those cues in tissue-engineered systems to direct differentiation into desired cell types and tissues. Hydrogels formed from poly(ethylene glycol) (PEG) are useful as scaffolds for promoting stem cell growth and differentiation towards the formation of tissues. The mechanical and biochemical microenvironment of these PEG hydrogels can be modified in a variety of ways to control cellular functions that are important in determining and maintaining stem cell phenotype. In this review, recent advances in the synthesis and modification of PEG hydrogels will be presented, along with important physicochemical considerations in the design of these hydrogels to better mimic the stem cell microenvironment and direct stem cell differentiation.

Graphical abstract: Synthetic hydrogels for controlled stem cell differentiation

Article information

Article type
Review Article
Submitted
12 Aug 2009
Accepted
28 Oct 2009
First published
24 Nov 2009

Soft Matter, 2010,6, 67-81

Synthetic hydrogels for controlled stem cell differentiation

S. Q. Liu, R. Tay, M. Khan, P. L. Rachel Ee, J. L. Hedrick and Y. Y. Yang, Soft Matter, 2010, 6, 67 DOI: 10.1039/B916705F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements