Jump to main content
Jump to site search

Issue 2, 2010
Previous Article Next Article

Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods

Author affiliations

Abstract

Using high-throughput instrumentation to screen conditions, the reaction between FeCl2 and H3BTT·2HCl (BTT3− = 1,3,5-benzenetristetrazolate) in a mixture of DMF and DMSO was found to afford Fe3[(Fe4Cl)3(BTT)8]2·22DMF·32DMSO·11H2O. This compound adopts a porous three-dimensional framework structure consisting of square [Fe4Cl]7+ units linked via triangular BTT3− bridging ligands to give an anionic 3,8-net. Mössbauer spectroscopy carried out on a DMF-solvated version of the material indicated the framework to contain high-spin Fe2+ with a distribution of local environments and confirmed the presence of extra-framework iron cations. Upon soaking the compound in methanol and heating at 135 °C for 24 h under dynamic vacuum, most of the solvent is removed to yield Fe3[(Fe4Cl)3(BTT)8(MeOH)4]2 (Fe-BTT), a microporous solid with a BET surface area of 2010 m2 g−1 and open Fe2+ coordination sites. Hydrogen adsorption data collected at 77 K show a steep rise in the isotherm, associated with an initial isosteric heat of adsorption of 11.9 kJ mol−1, leading to a total storage capacity of 1.1 wt% and 8.4 g L−1 at 100 bar and 298 K. Powder neutron diffraction experiments performed at 4 K under various D2 loadings enabled identification of ten different adsorption sites, with the strongest binding site residing just 2.17(5) Å from the framework Fe2+ cation. Inelastic neutron scattering spectra are consistent with the strong rotational hindering of the H2 molecules at low loadings, and further reveal the catalytic conversion of ortho-H2 to para-H2 by the paramagnetic iron centers. The exposed Fe2+ cation sites within Fe-BTT also lead to the selective adsorption of CO2 over N2, with isotherms collected at 298 K indicating uptake ratios of 30.7 and 10.8 by weight at 0.1 and 1.0 bar, respectively.

Graphical abstract: Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods

Back to tab navigation

Supplementary files

Publication details

The article was received on 18 Feb 2010, accepted on 30 Apr 2010 and first published on 18 Jun 2010


Article type: Edge Article
DOI: 10.1039/C0SC00179A
Chem. Sci., 2010,1, 184-191

  •   Request permissions

    Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods

    K. Sumida, S. Horike, S. S. Kaye, Z. R. Herm, W. L. Queen, C. M. Brown, F. Grandjean, G. J. Long, A. Dailly and J. R. Long, Chem. Sci., 2010, 1, 184
    DOI: 10.1039/C0SC00179A

Search articles by author

Spotlight

Advertisements