Issue 4, 2010

Correlated single quantum dot blinking and interfacial electron transfer dynamics

Abstract

The electron transfer (ET) dynamics from core/multi-shell (CdSe/CdS3MLZnCdS2MLZnS2ML) quantum dots (QDs) to adsorbed Fluorescein (F27) molecules have been studied by single particle spectroscopy to probe the relationship between single QD interfacial electron transfer and blinking dynamics. Electron transfer from the QD to F27 and the subsequent recombination were directly observed by ensemble-averaged transient absorption spectroscopy. Single QD-F27 complexes show correlated fluctuation of fluorescence intensity and lifetime, similar to those observed in free QDs. With an increasing ET rate (controlled by F27-to-QD ratio), the lifetime of on states decreases and relative contribution of off states increases. It was shown that ET is active for QDs in on states, the excited state lifetime of which reflects the ET rate, whereas in the off state QD excitons decay by Auger relaxation and ET is not a competitive quenching pathway. Thus, the blinking dynamics of single QDs modulate their interfacial ET activity. Furthermore, interfacial ET provides an additional pathway for generating off states, leading to correlated single QD interfacial ET and blinking dynamics in QD-acceptor complexes. Because blinking is a general phenomenon of single QDs, it appears that the correlated interfacial ET and blinking and the resulting intermittent ET activity are general phenomena for single QDs.

Graphical abstract: Correlated single quantum dot blinking and interfacial electron transfer dynamics

Supplementary files

Article information

Article type
Edge Article
Submitted
14 Jun 2010
Accepted
26 Jul 2010
First published
31 Aug 2010

Chem. Sci., 2010,1, 519-526

Correlated single quantum dot blinking and interfacial electron transfer dynamics

S. Jin, J. Hsiang, H. Zhu, N. Song, R. M. Dickson and T. Lian, Chem. Sci., 2010, 1, 519 DOI: 10.1039/C0SC00334D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements