Jump to main content
Jump to site search

Issue 5, 2010

A versatile, solvent-free methodology for the functionalisation of carbon nanotubes

Author affiliations

Abstract

High temperature activation of carbon nanotubes (CNTs) provides a new and highly versatile functionalisation strategy. The reaction allows the attachment of a wide variety of functional species onto the nanotube surface at grafting ratios between 1–8 wt%, whilst maintaining the intrinsic properties of the untreated materials. The underlying, radical-based, reaction mechanism has been established by quenching experiments and EPR studies. The distribution of the functionalised sites has been investigated at the microscopic scale using tagging reactions. The grafted products have been characterized by electron microscopy, thermal analysis (TGA), Raman spectroscopy, and inverse gas chromatography (IGC). The change in the CNT surface properties after grafting has been quantified in terms of dispersive and specific surface energies, and altered dispersibilities in a broad range of solvents. It is possible to carry out the reaction using gas phase reagents, providing a clean, efficient, and scalable methodology, relevant to a diverse range of applications.

Graphical abstract: A versatile, solvent-free methodology for the functionalisation of carbon nanotubes

Supplementary files

Article information


Submitted
30 Apr 2010
Accepted
01 Jul 2010
First published
11 Aug 2010

Chem. Sci., 2010,1, 603-608
Article type
Edge Article

A versatile, solvent-free methodology for the functionalisation of carbon nanotubes

R. Menzel, M. Q. Tran, A. Menner, C. W. M. Kay, A. Bismarck and M. S. P. Shaffer, Chem. Sci., 2010, 1, 603 DOI: 10.1039/C0SC00287A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements