Issue 7, 2010

The structure of randomly branched polymers synthesized by living radical methods

Abstract

We present a new versatile model for the description of randomly branched polymers. Hyperbranched and highly branched polymers have many potential applications including viscosity modification, drug-delivery vehicles or supports for catalysts. Because of their complex architectures, it is difficult to visualize and describe the structure of randomly branched polymers. This work aims to introduce a new tool that will address this issue, by developing a model called kinetic random branching theory (KRBT). This new theory is based on random branching theory, optimized so that it is applicable to a wider range of polymers. In order to test the robustness of our model, we have considered three classes of branched polymers synthesized by radical polymerisation using the well-established ‘Strathclyde approach’, which is known to produce polymers of very complex structure. The three classes of polymer studied are methyl methacrylate, alternating styrene-maleic anhydride and divinyl benzene-only polymers, and in each case reversible addition-fragmentation chain transfer (RAFT) was used. We find that the majority of the polymer structures studied agree well with the predictions of our model, thus implying that they are indeed randomly hyperbranched polymers. The only case where the model failed to predict the structure of the polymer for a highly branched methyl methacrylate, synthesized to high conversions, in presence of an excess of brancher. This suggests that the sample is not a hyperbranched polymer, instead the polymers structure may be dominated by loops and cross-links such as in a nano-gel. By demonstrating the robustness of our model against these typical examples, we have established a new tool for characterising the structure of complex branched structures.

Graphical abstract: The structure of randomly branched polymers synthesized by living radical methods

Supplementary files

Article information

Article type
Paper
Submitted
25 Feb 2010
Accepted
28 Mar 2010
First published
27 May 2010

Polym. Chem., 2010,1, 1067-1077

The structure of randomly branched polymers synthesized by living radical methods

D. Konkolewicz, A. Gray-Weale and S. Perrier, Polym. Chem., 2010, 1, 1067 DOI: 10.1039/C0PY00064G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements