Issue 3, 2010

The pH-dependent photochemistry of anthraquinone-2-sulfonate

Abstract

The photochemistry of anthraquinone-2-sulfonate (AQ2S) was studied as a function of pH, combining laser flash photolysis and steady-state irradiation experiments, with the additional help of a computational study of energy levels. Two out of the three transient species produced upon irradiation of AQ2S can be involved into the degradation of dissolved molecules, and also AQ2S in its ground state is degraded. The reactive transients are less stable but often more reactive under acidic conditions, which modulates the pH trend of the photodegradation of the adopted organic substrates (furfuryl alcohol, benzene, nitrobenzene). The ability of the excited states of irradiated AQ2S to simulate the reactivity of singlet oxygen upon degradation of furfuryl alcohol, and that of the hydroxyl radical by producing phenol from benzene, can have important consequences. Furfuryl alcohol and benzene are widely adopted probe molecules for the respective quantification of singlet oxygen and the hydroxyl radical in many systems, among which are natural waters under irradiation. This study shows that the interference of AQ2S on singlet oxygen determination would be higher in acidic or basic than in ∼neutral conditions, while in the case of the hydroxyl radical the interference would increase with pH. Processes analogous to those studied could account for the interference of coloured dissolved organic matter on the quantification of singlet oxygen, observed in previous studies.

Graphical abstract: The pH-dependent photochemistry of anthraquinone-2-sulfonate

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2009
Accepted
16 Dec 2009
First published
27 Jan 2010

Photochem. Photobiol. Sci., 2010,9, 323-330

The pH-dependent photochemistry of anthraquinone-2-sulfonate

P. R. Maddigapu, A. Bedini, C. Minero, V. Maurino, D. Vione, M. Brigante, G. Mailhot and M. Sarakha, Photochem. Photobiol. Sci., 2010, 9, 323 DOI: 10.1039/B9PP00103D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements