Issue 11, 2010

Synthesis and characterization of 1,7-disubstituted and 1,6,7,12-tetrasubstituted perylenetetracarboxy-3,4:9,10-diimide derivatives

Abstract

A variety of perylenetetracarboxy-3,4:9,10-diimide derivatives have been synthesized. Particular attention was paid to substituents in positions 1, 6, 7 or 12. The energy differences between the frontier orbitals have been determined using optical spectroscopy (UV and fluorescence). The energy of the lowest unoccupied orbitals (LUMOs) were obtained by cyclic voltammetry. From both studies, the energies of the highest occupied orbitals (HOMOs) were also been calculated. A Hammett-type relationship was observed for the reduction potentials (Ered11/2) when correlated with the σortho parameter. The energies of the frontier orbitals define the domains of application of these compounds. They significantly depend on the substitution in positions 1, 6, 7, or 12.

Graphical abstract: Synthesis and characterization of 1,7-disubstituted and 1,6,7,12-tetrasubstituted perylenetetracarboxy-3,4:9,10-diimide derivatives

Article information

Article type
Paper
Submitted
31 Mar 2010
Accepted
10 May 2010
First published
11 Jun 2010

New J. Chem., 2010,34, 2537-2545

Synthesis and characterization of 1,7-disubstituted and 1,6,7,12-tetrasubstituted perylenetetracarboxy-3,4:9,10-diimide derivatives

M. Queste, C. Cadiou, B. Pagoaga, L. Giraudet and N. Hoffmann, New J. Chem., 2010, 34, 2537 DOI: 10.1039/C0NJ00240B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements