Issue 2, 2010

A strategy to discover inhibitors of Bacillus subtilis surfactin-type phosphopantetheinyl transferase

Abstract

Surfactin-type phosphopantetheinyl transferases (Sfp-PPTases) are responsible for modifying type I polyketide and non-ribosomal peptide synthases of prokaryotes and have been implicated in the activation of a variety of pathogen-associated virulence factors. As such, inhibitors of this enzyme class represent enticing leads for antibiotic development and can serve as tools in studies of bacterial metabolism. Currently, no small molecule inhibitors of Sfp-PPTase are known, highlighting the need for efficient methods for PPTaseinhibitor identification and development. Herein, we present the design and implementation of a robust and miniaturized high-throughput kinetic assay for inhibitors of Sfp-PPTase using the substrate combination of rhodamine-labeled coenzyme A and Black Hole Quencher-2 labeled consensus acceptor peptide YbbR. Upon PPTase-catalyzed transfer of the rhodamine-labeled phosphopantetheinyl arm onto the acceptor peptide, the fluorescent donor and quencher are covalently joined and the fluorescence signal is reduced. This assay was miniaturized to a low 4 μL volume in 1536-well format and was used to screen the library of pharmacologically active compounds (LOPAC1280). Top inhibitors identified by the screen were further characterized in secondary assays, including protein phosphopantetheinylation detected by gel electrophoresis. The present assay enables the screening of large compound libraries against Sfp-PPTase in a robust and automated fashion and is applicable to designing assays for related transferase enzymes.

Graphical abstract: A strategy to discover inhibitors of Bacillus subtilis surfactin-type phosphopantetheinyl transferase

Article information

Article type
Paper
Submitted
06 Jul 2009
Accepted
11 Aug 2009
First published
13 Oct 2009

Mol. BioSyst., 2010,6, 365-375

A strategy to discover inhibitors of Bacillus subtilis surfactin-type phosphopantetheinyl transferase

A. Yasgar, T. L. Foley, A. Jadhav, J. Inglese, M. D. Burkart and A. Simeonov, Mol. BioSyst., 2010, 6, 365 DOI: 10.1039/B913291K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements