Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 20, 2010
Previous Article Next Article

Optically addressable single-use microfluidic valves by laser printer lithography

Author affiliations


We report the design, fabrication, and characterization of practical microfluidic valves fabricated using laser printer lithography. These optofluidic valves are opened by directing optical energy from a solid-state laser, with similar power characteristics to those used in CD/DVD drives, to a spot of printed toner where localized heating melts an orifice in the polymer layer in as little as 500 ms, connecting previously isolated fluidic components or compartments. Valve functionality, response time, and laser input energy dependence of orifice size are reported for cyclo-olefin polymer (COP) and polyethylene terephthalate (PET) films. Implementation of these optofluidic valves is demonstrated on pressure-driven and centrifugal microfluidic platforms. In addition, these “one-shot” valves comprise a continuous polymer film that hermetically isolates on-chip fluid volumes within fluidic devices using low-vapor-permeability materials; we confirmed this for a period of one month. The fabrication and integration of optofluidic valves are compatible with a range of polymer microfabrication technologies and should facilitate the development of fully integrated, reconfigurable, and automated lab-on-a-chip systems, particularly when reagents must be stored on chip for extended periods, e.g. for medical diagnostic devices, lab-on-a-chip synthetic systems, or hazardous biochemical analysis platforms.

Graphical abstract: Optically addressable single-use microfluidic valves by laser printer lithography

Back to tab navigation

Supplementary files

Publication details

The article was received on 08 Apr 2010, accepted on 26 Jul 2010 and first published on 25 Aug 2010

Article type: Paper
DOI: 10.1039/C004980H
Citation: Lab Chip, 2010,10, 2680-2687

  •   Request permissions

    Optically addressable single-use microfluidic valves by laser printer lithography

    J. L. Garcia-Cordero, D. Kurzbuch, F. Benito-Lopez, D. Diamond, L. P. Lee and A. J. Ricco, Lab Chip, 2010, 10, 2680
    DOI: 10.1039/C004980H

Search articles by author