Issue 12, 2010

A microfluidic platform for complete mammalian cell culture

Abstract

We introduce the first lab-on-a-chip platform for complete mammalian cell culture. The new method is powered by digital microfluidics (DMF), a technique in which nanolitre-sized droplets are manipulated on an open surface of an array of electrodes. This is the first application of DMF to adherent cell culture and analysis, and more importantly, represents the first microfluidic platform capable of implementing all of the steps required for mammalian cell culture—cell seeding, growth, detachment, and re-seeding on a fresh surface. Three key innovations were required to implement complete cell culture on a microfluidic device: (1) a technique for growing cells on patterned islands (or “adhesion pads”) positioned on an array of DMF actuation electrodes; (2) a method for rapidly and efficiently exchanging media and other reagents on cells grown on adhesion pads; and (3) a system capable of detachment and collection of cells from an (old) origin site and delivery to a (new) destination site for subculture. The new technique was applied to cells from several different lines which were seeded and repeatedly subcultured for weeks at a time in 150 nL droplets. Cells handled in this manner exhibited growth characteristics and morphology comparable to those cultured in standard tissue culture vessels. To illustrate an application for this system, a microfluidic method was developed to implement transient transfection—we propose that the combination of this technique with multigenerational culture allows for “on-demand” generation of transiently transfected cells. Broadly, we anticipate that the automated cell microculture technique presented here will be useful in myriad applications that would benefit from automated mammalian cell culture.

Graphical abstract: A microfluidic platform for complete mammalian cell culture

Supplementary files

Article information

Article type
Paper
Submitted
01 Feb 2010
Accepted
31 Mar 2010
First published
15 Apr 2010

Lab Chip, 2010,10, 1536-1542

A microfluidic platform for complete mammalian cell culture

I. Barbulovic-Nad, S. H. Au and A. R. Wheeler, Lab Chip, 2010, 10, 1536 DOI: 10.1039/C002147D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements