Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 1, 2010
Previous Article Next Article

Co-culture of epithelial cells and bacteria for investigating host–pathogen interactions

Author affiliations

Abstract

The human gastrointestinal (GI) tract is a unique environment in which intestinal epithelial cells and non-pathogenic (commensal) bacteria co-exist. This equilibrium is perturbed by the entry of pathogens into the GI tract. A key step in the infection process is the navigation of the pathogen through the commensal bacterial layer to attach to epithelial cells. It has been proposed that the microenvironment that the pathogen encounters in the commensal layer plays a significant role in determining the extent of attachment and colonization. Current culture methods for investigating pathogen colonization are not well suited for investigating this hypothesis as they do not enable co-culture of bacteria and epithelial cells in a manner that mimics the GI tract microenvironment. Here we report the development of a microfluidic co-culture model that enables independent culture of eukaryotic cells and bacteria, and testing the effect of the commensal microenvironment on pathogen colonization. A pneumatically-actuated system was developed to form reversible islands that allow development of bacterial biofilm along with culture of an epithelial cell monolayer. The co-culture model used to develop a commensal Escherichia coli biofilm among HeLa cells, followed by introduction of enterohemorrhagic E. coli (EHEC) into the commensal island, in a sequence that mimics the sequence of events in GI tract infection. Using wild-type E. coli and a tnaA mutant (lacks the signal indole) as the commensal bacteria, we demonstrate that the commensal biofilm microenvironment is a key determinant of EHEC infectivity and virulence. Our model has the potential to be used in fundamental studies investigating the effect of GI tract signals on EHEC virulence as well as for screening of different probiotic strains for modulating pathogen infectivity in the GI tract.

Graphical abstract: Co-culture of epithelial cells and bacteria for investigating host–pathogen interactions

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 Jun 2009, accepted on 11 Sep 2009 and first published on 16 Oct 2009


Article type: Paper
DOI: 10.1039/B911367C
Citation: Lab Chip, 2010,10, 43-50

  •   Request permissions

    Co-culture of epithelial cells and bacteria for investigating host–pathogen interactions

    J. Kim, M. Hegde and A. Jayaraman, Lab Chip, 2010, 10, 43
    DOI: 10.1039/B911367C

Search articles by author

Spotlight

Advertisements