Issue 16, 2010

ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection

Abstract

A miniature 96 sample ELISA-lab-on-a-chip (ELISA-LOC) was designed, fabricated, and tested for immunological detection of Staphylococcal Enterotoxin B (SEB). The chip integrates a simple microfluidics system into a miniature ninety-six sample plate, allowing the user to carry out an immunological assay without a laboratory. Assay reagents are delivered into the assay plate without the need for separate devices commonly used in immunoassays. The ELISA-LOC was constructed using Laminated Object Manufacturing (LOM) technology to assemble six layers with an acrylic (poly(methyl methacrylate) (PMMA)) core and five polycarbonate layers micromachined by a CO2 laser. The ELISA-LOC has three main functional elements: reagent loading fluidics, assay and detection wells, and reagent removal fluidics, a simple “surface tension” valve used to control the flow. To enhance assay sensitivity and to perform the assay without a lab, ELISA-LOC detection combines several biosensing elements: (1) carbon nanotube (CNT) technology to enhance primary antibody immobilization, (2) sensitive ECL (electrochemiluminescence) detection, and (3) a charge-coupled device (CCD) detector for measuring the light signal generated by ECL. Using a sandwich ELISA assay, the system detected SEB at concentrations as low as 0.1 ng ml−1, which is similar to the reported sensitivity of conventional ELISA. The fluidics system can be operated by a syringe and does not require power for operation. This simple point-of-care (POC) system is useful for carrying out various immunological assays and other complex medical assays without a laboratory.

Graphical abstract: ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection

Article information

Article type
Paper
Submitted
08 Mar 2010
Accepted
18 May 2010
First published
11 Jun 2010

Lab Chip, 2010,10, 2093-2100

ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection

S. Sun, M. Yang, Y. Kostov and A. Rasooly, Lab Chip, 2010, 10, 2093 DOI: 10.1039/C003994B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements