Issue 1, 2010

Co-culture of epithelial cells and bacteria for investigating host–pathogen interactions

Abstract

The human gastrointestinal (GI) tract is a unique environment in which intestinal epithelial cells and non-pathogenic (commensal) bacteria co-exist. This equilibrium is perturbed by the entry of pathogens into the GI tract. A key step in the infection process is the navigation of the pathogen through the commensal bacterial layer to attach to epithelial cells. It has been proposed that the microenvironment that the pathogen encounters in the commensal layer plays a significant role in determining the extent of attachment and colonization. Current culture methods for investigating pathogen colonization are not well suited for investigating this hypothesis as they do not enable co-culture of bacteria and epithelial cells in a manner that mimics the GI tract microenvironment. Here we report the development of a microfluidic co-culture model that enables independent culture of eukaryotic cells and bacteria, and testing the effect of the commensal microenvironment on pathogen colonization. A pneumatically-actuated system was developed to form reversible islands that allow development of bacterial biofilm along with culture of an epithelial cell monolayer. The co-culture model used to develop a commensal Escherichia coli biofilm among HeLa cells, followed by introduction of enterohemorrhagic E. coli (EHEC) into the commensal island, in a sequence that mimics the sequence of events in GI tract infection. Using wild-type E. coli and a tnaA mutant (lacks the signal indole) as the commensal bacteria, we demonstrate that the commensal biofilm microenvironment is a key determinant of EHEC infectivity and virulence. Our model has the potential to be used in fundamental studies investigating the effect of GI tract signals on EHEC virulence as well as for screening of different probiotic strains for modulating pathogen infectivity in the GI tract.

Graphical abstract: Co-culture of epithelial cells and bacteria for investigating host–pathogen interactions

Supplementary files

Article information

Article type
Paper
Submitted
10 Jun 2009
Accepted
11 Sep 2009
First published
16 Oct 2009

Lab Chip, 2010,10, 43-50

Co-culture of epithelial cells and bacteria for investigating host–pathogen interactions

J. Kim, M. Hegde and A. Jayaraman, Lab Chip, 2010, 10, 43 DOI: 10.1039/B911367C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements