Issue 32, 2010

Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes

Abstract

Vanadium pentoxide (V2O5) nanofibers (VNF) were synthesized through a simple electrospinning method, and their application as supercapacitor electrodes demonstrated. The effect of annealing temperature on the microstructure and morphology of VNF was investigated systematically through scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area measurements. Electrochemical properties of the synthesized products as electrodes in a supercapacitor device were studied using cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy in aqueous electrolyte of different pH and also in an organic electrolyte. The highest specific capacitance was achieved for VNF annealed at 400 °C, which yielded 190 F g−1 in aqueous electrolyte (2 M KCl) and 250 F g−1 in organic electrolyte (1 M LiClO4 in PC) with promising energy density of 5 Wh kg−1 and 78 Wh kg−1 respectively.

Graphical abstract: Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes

Article information

Article type
Paper
Submitted
18 Jan 2010
Accepted
06 May 2010
First published
30 Jun 2010

J. Mater. Chem., 2010,20, 6720-6725

Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes

G. Wee, H. Z. Soh, Y. L. Cheah, S. G. Mhaisalkar and M. Srinivasan, J. Mater. Chem., 2010, 20, 6720 DOI: 10.1039/C0JM00059K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements