A new class of high molecular weight polyethersulfone ionomers is described in which the ionic content can be varied, at will, over a very wide and fully controllable range. A novel type of coating process enables these materials to be deposited from alcohol-type solvents as cohesive but very thin (50–250 nm) films on porous support membranes, giving high-flux membranes (3.3–5.0 L m−2 h−1 bar−1) with very good, though not outstanding, salt rejection (typically 92–96%). A secondary layer of formaldehyde–cross-linked polyvinyl alcohol can be deposited from aqueous solution on the surface of the ionomer membrane, and this layer increases salt rejection to greater than 99% without serious loss of water permeability. The final multilayer membrane shows excellent chlorine tolerance in reverse-osmosis operation.
    
         
            
                     
                    
                        
                            
                                You have access to this article
                            
                            
                                
                                    
                                        
                                             Please wait while we load your content...
                                        
                                        
                                            Something went wrong. Try again?
                                            Please wait while we load your content...
                                        
                                        
                                            Something went wrong. Try again?