Issue 9, 2010

2,1,3-Benzothiadiazole (BTD)-moiety-containing red emitter conjugated amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) copolymers for bioimaging

Abstract

2,1,3-Benzothiadiazole (BTD)-containing red emitter was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers to form two new fluorophore-conjugated block copolymers (P5 and P7). P5 is a cationic amino group-containing polymer, whereas P7 is a neutral polymer. The polymers formed micelles in aqueous solution with average diameters of 45 nm (P7) and 78 nm (P5), which were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM). Cell internalization of the micelles using mouse macrophage RAW 264.7 was investigated. The micelles formed from P5 were endocytosed into the cell's cytoplasm through a non-specific endocytosis process, which was affected by temperature and calcium ions. Micelles formed from P7 could not be endocytosed. The dramatic difference of cell uptake between P5 and P7 indicated the cationic amino groups had a strong influence on the cell internalization to enhance the endocytosis pathway. 3-(4,5-Dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay was used to evaluate the cytotoxicity of the P5 micelle and no significant toxicity was observed. This study is the first report regarding the synthesis of BTD-conjugated block copolymers and the application of the biomacromolecules for bioimaging.

Graphical abstract: 2,1,3-Benzothiadiazole (BTD)-moiety-containing red emitter conjugated amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) copolymers for bioimaging

Supplementary files

Article information

Article type
Paper
Submitted
26 Oct 2009
Accepted
30 Nov 2009
First published
14 Jan 2010

J. Mater. Chem., 2010,20, 1728-1736

2,1,3-Benzothiadiazole (BTD)-moiety-containing red emitter conjugated amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) copolymers for bioimaging

Y. Tian, W. Wu, C. Chen, T. Strovas, Y. Li, Y. Jin, F. Su, D. R. Meldrum and A. K.-Y. Jen, J. Mater. Chem., 2010, 20, 1728 DOI: 10.1039/B922435C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements