Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 10, 2010
Previous Article Next Article

Salt-assisted organic-acid-catalyzed depolymerization of cellulose

Author affiliations


Dicarboxylic acids (e.g. oxalic and maleic acid) are able to depolymerize cellulose, producing oligomers and glucose. However, to reach efficient organic-acid-catalyzed performances with crystalline celluloses, high temperatures (>160 °C) are needed. These energetically-demanding conditions lead to undesired sugar degradation as well. Herein it is shown that organic acid-catalyzed cellulose depolymerization can proceed efficiently in water under mild reaction conditions (100–125 °C) by the addition of inexpensive NaCl (30 wt%). The application of some pressure in the reactor (10–30 bar) also influences and improves the depolymerization outcome. It is believed that the salt solutions act in a mechanism similar to ionic liquids and disrupt the hydrogen-bond matrix among cellulose fibers. Depolymerization proceeds efficiently with amorphous cellulose, α-cellulose, as well as with microcrystalline cellulose (Avicel®). Importantly, catalysis can be easily controlled by temperature, catalyst loading and salt concentrations, as well as by the applied pressure in the reactor, and thus sugar degradation can be diminished. Furthermore, experiments conducted using concentrated seawater as solvent and maleic acid as catalyst showed positive results in the hydrolysis of Avicel®.

Graphical abstract: Salt-assisted organic-acid-catalyzed depolymerization of cellulose

Back to tab navigation

Article information

25 Jun 2010
27 Jul 2010
First published
03 Sep 2010

Green Chem., 2010,12, 1844-1849
Article type

Salt-assisted organic-acid-catalyzed depolymerization of cellulose

T. vom Stein, P. Grande, F. Sibilla, U. Commandeur, R. Fischer, W. Leitner and P. Domínguez de María, Green Chem., 2010, 12, 1844
DOI: 10.1039/C0GC00262C

Social activity

Search articles by author