Issue 12, 2010

Hydroprocessing of jatropha oil and its mixtures with gas oil

Abstract

Hydroprocessing catalysts, sulfided Ni–W/SiO2–Al2O3, Co–Mo/Al2O3 and Ni–Mo/Al2O3 have been developed, and their performances in hydroprocessing of jatropha oil and its mixtures with refinery gas oil compared in terms of, detailed product distribution in order to optimize the catalyst and conditions that can give maximum yield of desired transportation fuel such as diesel or kerosene (jet). C15–C18 hydrocarbon yield (diesel range) is highest (97.9%) over Ni–Mo catalyst, while it is 80.8% over Ni–W catalyst and surprisingly low (49.2%) over Co–Mo catalyst. Jatropha oil with high as well as low free fatty acid (FFA) contents could be hydroprocessed with little observable effect on reactor metallurgy. The isomers to n-paraffins (i/n) ratio is very low and different for the three types of catalysts- nearly 22–36 times higher for the hydrocracking (Ni–W) catalyst than that for the hydrotreating (Ni–Mo) catalyst. The hydrodeoxygenation pathway for oxygen removal from triglyceride is favored over the fresh Ni–Mo and Co–Mo catalysts, while decarboxylation/decarbonylation pathway is favored over the Ni–W catalyst. But, resulfidation of used Ni–Mo catalyst results in decarboxylation/decarbonylation route being slightly more favored. The yield of diesel range (250–380 °C) product during co-processing varied between 88–92% for the Ni–Mo catalyst. Hydrodesulfurization of gas oil is better during co-processing with jatropha oil. The activation energy for overall S-removal is much lower than that for overall O-removal. Densities of the products were also observed to meet the required specification.

Graphical abstract: Hydroprocessing of jatropha oil and its mixtures with gas oil

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2010
Accepted
18 Oct 2010
First published
10 Nov 2010

Green Chem., 2010,12, 2232-2239

Hydroprocessing of jatropha oil and its mixtures with gas oil

R. Kumar, B. S. Rana, R. Tiwari, D. Verma, R. Kumar, R. K. Joshi, M. O. Garg and A. K. Sinha, Green Chem., 2010, 12, 2232 DOI: 10.1039/C0GC00204F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements