Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 7, 2010
Previous Article Next Article

A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids

Author affiliations


Lignocellulosic biomass is an attractive resource for producing transportation fuels, and consequently novel approaches are being sought for transforming the lignin and cellulosic constituents of biomass to fuels or fuel additives. Glucose, the monomer of cellulose, is a good starting material for exploring such chemistries. We report here the results of an investigation aimed at identifying catalysts for the dehydration of glucose to 5-hydroxymethylfurfural (HMF) dissolved in ionic liquids and the subsequent conversion of HMF to 2,5-dimethylfuran (DMF), a high-energy content product that could be used as a fuel or fuel additive. Heteropoly acids were found to be exceptionally active and selective catalysts for the dehydration of glucose. Nearly 100% yield of HMF could be achieved using 12-molybdophosphoric acid (12-MPA) in a solution of 1-ethyl-3-methylimidazolium chloride (EMIMCl) and acetonitrile. The addition of acetonitrile to EMIMCl suppressed the formation of humins from glucose. The high HMF selectivity achievable with heteropoly acid catalysts is ascribed to stabilization of 1,2-enediol and other intermediates involved in the dehydration of glucose and the avoidance of forming the 2,3-enediol intermediate leading to furylhydroxymethyl ketone (FHMK). Carbon-supported metals, and in particular Pd/C, were effective in promoting the hydrogenation of HMF dissolved in EMIMCl and acetonitrile to DMF. The following intermediates were observed in the hydrogenation of HMF to DMF: 5-methylfurfural (MF), 5-methylfurfyl alcohol (MFA), and 2,5-dihydroxymethylfuran (DHMF). The relative rate of formation and consumption of these compounds was explored by using each of them as a reactant in order to identify the reaction pathway from HMF to DMF. It was also observed that HMF produced via glucose dehydration could be converted to DMF without isolation, if the dehydration catalyst, 12 MPA, was replaced by the hydrogenation catalyst, Pd/C. This two-step catalytic approach provides the basis for completely converting glucose to HMF and further converting HMF to DMF.

Graphical abstract: A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids

Back to tab navigation

Publication details

The article was received on 16 Mar 2010, accepted on 04 May 2010 and first published on 28 May 2010

Article type: Paper
DOI: 10.1039/C004343E
Citation: Green Chem., 2010,12, 1253-1262

  •   Request permissions

    A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids

    M. Chidambaram and A. T. Bell, Green Chem., 2010, 12, 1253
    DOI: 10.1039/C004343E

Search articles by author