Volume 146, 2010

The effect of counterions on surfactant-hydrophobized surfaces

Abstract

A common method for creating hydrophobic monolayers on charged surfaces is by self-assembly of ionic surfactants from solution. Several factors are important in controlling the structure and properties of such layers: the hydrophobic interactions between adjacent chains, the electrostatic interactions between adjacent headgroups, and electrostatic interactions between the headgroups and the surface charges. We have discovered that the surfactant counterions can have a remarkable effect on the hydrophobicity and hydrophobic interactions of a self-assembled layer. The experimental system was stearoyl(C18)trimethylammonium surfactant with iodide, bromide or chloride counterion (STAI, STABr, and STACl respectively) self-assembled onto mica substrates. Changing the surfactant counterions alters the wetting properties of hydrophobic monolayers on mica. Using a surface force balance we have carried out direct measurements of the interaction force between two surfactant-coated surfaces across water, revealing a strong effect of counterion on the normal interactions. Paradoxically, STAI-coated mica has both the highest water contact angle (is ‘most hydrophobic’) at the same time as having the highest surface charge relative to STABr and STACl. We use measurements of interfacial tension, asymmetric force measurements, and XPS to lead us towards an interpretation of these results and an understanding of the effect of counterion on the structure of self-assembled monolayers.

Article information

Article type
Paper
Submitted
04 Dec 2009
Accepted
11 Jan 2010
First published
05 May 2010

Faraday Discuss., 2010,146, 309-324

The effect of counterions on surfactant-hydrophobized surfaces

G. Silbert, J. Klein and S. Perkin, Faraday Discuss., 2010, 146, 309 DOI: 10.1039/B925569A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements