Issue 32, 2010

First principles study of doped carbon supports for enhanced platinumcatalysts

Abstract

Highly oriented pyrolytic graphite (HOPG) implanted with N, Ar and B is studied as a support for platinum nanoparticle catalysts for fuel cells. Experimentally, we find that Pt supported by N-HOPG is more disperse, more catalytically active and suffers less particle ripening than native HOPG, while Pt supported on Ar-irradiated HOPG is slightly more active but ripens more than Pt on native HOPG. Defective HOPG supports are modeled by density functional theory (DFT) calculations that confirm and explain the above experimental results. First, defect energetics are studied to demonstrate that nitrogen doping at high doses likely causes agglomerated nitrogenous defect clusters, and irradiation with Ar ions creates vacancies that agglomerate in vacancy clusters. Second, Pt catalyst particle nucleation and agglomeration is studied. For Pt clusters supported on HOPG with nitrogen defects, calculations show a greater driving force for nucleation and greater particle tethering. For Pt clusters supported on HOPG with vacancy aggregations, this study shows a strong driving force for nucleation and a much enhanced tendency for particle ripening. Third, the electronic structure of Pt clusters on different supports is calculated. Finally, reaction energetics are calculated for two likely reaction pathways over Pt clusters supported on different HOPG substrates. PtN-HOPG shows modified electronic structure of the Pt catalyst and increased activity towards oxygen. PtAr-HOPG shows slightly enhanced catalytic activity towards oxygen. In all respects, the findings agree with experiment. The calculations attribute the catalytic activity changes primarily to changes in the workfunction and secondarily to the d-band structure of supported Pt particles.

Graphical abstract: First principles study of doped carbon supports for enhanced platinum catalysts

Article information

Article type
Paper
Submitted
24 Dec 2009
Accepted
22 Apr 2010
First published
23 Jun 2010

Phys. Chem. Chem. Phys., 2010,12, 9461-9468

First principles study of doped carbon supports for enhanced platinum catalysts

T. Holme, Y. Zhou, R. Pasquarelli and R. O'Hayre, Phys. Chem. Chem. Phys., 2010, 12, 9461 DOI: 10.1039/B927263A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements