Issue 17, 2010

The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study

Abstract

Nitrogen-containing functional groups were generated on the surface of partially oxidized multi-walled carbon nanotubes (CNTs) via post-treatment in ammonia. The treatment temperature was varied in order to tune the amount and type of nitrogen- and oxygen-containing functional groups, which were studied using high-resolution X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD). The surface defects on CNTs due to the incorporation of nitrogen were investigated by Raman spectroscopy. Deconvoluted XP N1s spectra were used for the quantification of different nitrogen-containing functional groups, and TPD studies were performed in inert and ammonia atmosphere to investigate the surface reactions occurring on the oxidized CNT surfaces quantitatively. Nitrile, lactam, imide and amine-type functional groups were formed in the presence of ammonia below 300 °C. When the OCNTs were treated in the medium temperature range between 300 °C to 500 °C, mainly pyridine-type nitrogen groups were generated, whereas pyridinic, pyrrolic and quaternary-type nitrogen groups were the dominating species present on the CNT surface when treated above 500 °C. It was found that about 38% of the oxygen functional groups react with ammonia below 500 °C.

Graphical abstract: The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study

Article information

Article type
Paper
Submitted
10 Nov 2009
Accepted
28 Jan 2010
First published
24 Feb 2010

Phys. Chem. Chem. Phys., 2010,12, 4351-4359

The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study

S. Kundu, W. Xia, W. Busser, M. Becker, D. A. Schmidt, M. Havenith and M. Muhler, Phys. Chem. Chem. Phys., 2010, 12, 4351 DOI: 10.1039/B923651A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements