Issue 5, 2010

Storage and separation applications of nanoporous metal–organic frameworks

Abstract

This Highlight explores the progress and perspective in studies of metal–organic frameworks (MOFs), a new class of nanoporous materials, particularly suited for storage and separation applications related to energy utilization and environmental remediation. Since the discovery of the first MOF compound, hundreds of different MOFs have been developed and reported. MOFs are generally synthesized by self-assembly of metal ions/clusters as coordination centers and organic ligands as linkers. They possess intriguing chemical and physical properties and are structurally tunable, thermally stable and mechanically sound. MOFs are increasingly proving to be a superior class of materials for state-of-the-art applications in crystal engineering, chemistry, and materials science. In this Highlight, we present general routes for MOFs synthesis, discuss reticular design of their pore structures, and show some of their remarkable applications, especially in the areas of storage and separation.

Graphical abstract: Storage and separation applications of nanoporous metal–organic frameworks

Article information

Article type
Highlight
Submitted
14 May 2009
Accepted
16 Oct 2009
First published
18 Nov 2009

CrystEngComm, 2010,12, 1337-1353

Storage and separation applications of nanoporous metal–organic frameworks

R. Zou, A. I. Abdel-Fattah, H. Xu, Y. Zhao and D. D. Hickmott, CrystEngComm, 2010, 12, 1337 DOI: 10.1039/B909643B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements