Issue 2, 2010

In vivo investigation of brain and systemic ketobemidonemetabolism

Abstract

Ketobemidone metabolites have previously been identified in urine and plasma; here we show, for the first time, that norketobemidone and ketobemidone N-oxide are present in in vivo microdialysate from rat brain (striatum) after reverse microdialysis, suggesting striatal metabolism of ketobemidone. Ketobemidone metabolites were also identified in in vivo microdialysate samples from brain and blood, as well as in urine from rats, after subcutaneous administration of ketobemidone. Three Phase I metabolites (norketobemidone, ketobemidone N-oxide and hydroxymethoxyketobemidone) and three Phase II metabolites (glucuronic acid conjugates of ketobemidone, norketobemidone and hydroxymethoxyketobemidone) were identified in the microdialysates after subcutaneous administration. Coupled capillary liquid chromatography tandem mass spectrometry (LC-MS/MS) and SPE (boronate)-MS/MS were utilized for the analysis of the biological samples. The Phase I metabolites were identified by comparing the retention times and tandem mass spectra of the microdialysates with synthetic standards. The Phase II metabolites were identified by determination of exact masses and by comparing the tandem mass spectra of the microdialysates with those of synthetic standards for the aglycones. Hydroxyketobemidone, a catechol-type Phase I metabolite, was selectively isolated by solid-phase boronate-complexation but identified in urine alone. This work demonstrated that the in vivo microdialysis technique in combination with LC-MS/MS can be used to study the local metabolism of a drug in the brain.

Graphical abstract: In vivo investigation of brain and systemic ketobemidone metabolism

Article information

Article type
Paper
Submitted
02 Sep 2009
Accepted
04 Dec 2009
First published
22 Dec 2009

Analyst, 2010,135, 405-413

In vivo investigation of brain and systemic ketobemidone metabolism

I. Sundström, J. Arts, D. Westerlund and P. E. Andrén, Analyst, 2010, 135, 405 DOI: 10.1039/B917940B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements