Issue 12, 2009

Universal behaviour in the mechanical properties of weakly aggregated colloidal particles

Abstract

We study the evolution of the elastic shear modulus of weakly aggregated colloidal particles during the onset of a delayed collapse under gravity. The early lifetime is characterised by an elastic shear modulus that increases logarithmically in time, following which the gels experience a catastrophic failure and the elastic modulus drops dramatically. As the gel collapses, various complex behaviours are seen, including a temporary stabilisation against collapse, and reformation of a new gel with its own elastic modulus that follows its own trajectory to collapse. Time-lapsed images acquired of identical samples in a transparent cell used to calibrate the measured shear modulus values allow observation of the sample-spanning collective rearrangement involved in the collapse. The loss of propagation of elastic stress in the gel is observed to precede the bulk collapse in all samples, with the two events always well-separated in time. The evolution of the viscoelastic response across a range of colloid volume fractions and polymer concentrations is significantly simplified by scaling the rheology curves for each sample together. From the scaling, we show a critical onset of the elastic modulus as a function of these system parameters. Moreover, our analyses of the time scale for collapse of the elastic shear modulus and of the gel itself over a range of colloid volume fractions and the polymer concentrations support a simple phenomenological model based on the dependence of the microscopic dynamics on the strength and number of sticky interparticle bonds.

Graphical abstract: Universal behaviour in the mechanical properties of weakly aggregated colloidal particles

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2008
Accepted
19 Jan 2009
First published
23 Feb 2009

Soft Matter, 2009,5, 2438-2447

Universal behaviour in the mechanical properties of weakly aggregated colloidal particles

S. W. Kamp and M. L. Kilfoil, Soft Matter, 2009, 5, 2438 DOI: 10.1039/B814975E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements