Issue 4, 2009

Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging

Abstract

We introduce a general approach for multicolor subdiffraction-resolution fluorescence imaging based on photoswitching of standard organic fluorophores. Photoswitching of ordinary fluorophores such as ATTO520, ATTO565, ATTO655, ATTO680, or ATTO700, i.e. the reversible transition from a fluorescent to a nonfluorescent state in aqueous buffers exploits the formation of long-lived triplet radical anions through reaction with reducing agents such as β-mercaptoethylamine and repopulation of the singlet ground state by interaction with molecular oxygen. Thus, the time the different fluorophores reside in the fluorescent state can be easily adjusted by the excitation intensity and the concentration of the reducing agent. We demonstrate the potential of multicolor photoswitching microscopy with subdiffraction-resolution on cytoskeletal networks and molecular quantification of proteins in the inner mitochondrial membrane with ∼20 nm optical resolution.

Graphical abstract: Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging

Article information

Article type
Paper
Submitted
15 Dec 2008
Accepted
28 Jan 2009
First published
09 Feb 2009

Photochem. Photobiol. Sci., 2009,8, 465-469

Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging

S. van de Linde, U. Endesfelder, A. Mukherjee, M. Schüttpelz, G. Wiebusch, S. Wolter, M. Heilemann and M. Sauer, Photochem. Photobiol. Sci., 2009, 8, 465 DOI: 10.1039/B822533H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements