Issue 1, 2009

Identifying molecular signatures in metal-molecule-metal junctions

Abstract

Single molecule identification in metal-molecule-metal junctions provides an ultimate probe that opens a new avenue for revolutionary advances in demonstrating single molecule device functions. Inelastic electron tunneling spectroscopy (IETS) is an ultra-sensitive method for probing vibrational characteristics of molecules with atomic resolution. State-of-the-art experiments on the inelastic transport in self-assembled monolayers of organic molecules have demonstrated the utility of the IETS technique to derive structural information concerning molecular conformations and contact configurations. Here we report the vibrational fingerprint of an individual π-conjugated molecule sandwiched between gold nanoelectrodes. Our strategy combines analyses of single molecule conductance and vibrational spectra exploiting the nanofabricated mechanically-controllable break junction. We performed IETS measurements on 1,4-benzenedithiol and 2,5-dimercapto-1,3,4-thiadiazole to examine chemical discrimination at the single-molecule level. We found distinct IET spectra unique to the test molecules that agreed excellently with the Raman and theoretical spectra in the fingerprint region, and thereby succeeded in electrical identification of single molecule junctions.

Graphical abstract: Identifying molecular signatures in metal-molecule-metal junctions

Article information

Article type
Paper
Submitted
15 Jun 2009
Accepted
14 Aug 2009
First published
02 Sep 2009

Nanoscale, 2009,1, 164-170

Identifying molecular signatures in metal-molecule-metal junctions

M. Tsutsui, M. Taniguchi, K. Shoji, K. Yokota and T. Kawai, Nanoscale, 2009, 1, 164 DOI: 10.1039/B9NR00122K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements