Issue 1, 2009

Unusually cyclized triterpenes: occurrence, biosynthesis and chemical synthesis

Abstract

Covering: 1998 to 2008

The biosynthetic origin of most of triterpenes lies in cascade cyclizations and rearrangements of the acyclic precursors squalene (S) and 2,3-oxidosqualene (OS), processes leading to tetra- and pentacyclic triterpene skeleta. Apart from these, a number of triterpenoid structures derived from cyclization processes, that are different from those leading to tetra- and pentacyclic triterpenes, are also found in Nature. We have defined these processes as unusual cyclizations, and grouped them in three blocks, namely, incomplete cyclizations of the corresponding S-derived precursors, cyclizations of S or OS towards polycyclic triterpenes and subsequent cleavage of the preformed ring systems, and two independent cyclizations of the S- or OS-derived precursor. Apart from the molecules obtained from intact organisms, we will also consider the compounds obtained from in vitro cyclizations promoted by enzyme systems. After establishing which compounds could unambiguously be grouped under the term ‘unusually cyclized triterpenes’, this review moves on to the advances achieved in this kind of structure during the last ten years. These advances are presented in three parts. The first one presents the structure and biological properties of the unusual triterpenes reported in the last decade. The second part considers the main biosynthetic pathways which justify the formation of these triterpenes from their corresponding acyclic precursors. Finally, we look at the achievements made in different synthetic strategies directed at some of these molecules. One hundred and twenty-three references are cited.

Graphical abstract: Unusually cyclized triterpenes: occurrence, biosynthesis and chemical synthesis

Article information

Article type
Review Article
Submitted
24 Jul 2008
First published
29 Oct 2008

Nat. Prod. Rep., 2009,26, 115-134

Unusually cyclized triterpenes: occurrence, biosynthesis and chemical synthesis

V. Domingo, J. F. Arteaga, J. F. Quílez del Moral and A. F. Barrero, Nat. Prod. Rep., 2009, 26, 115 DOI: 10.1039/B801470C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements