Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 23, 2009
Previous Article Next Article

Tunable shrink-induced honeycomb microwell arrays for uniform embryoid bodies

Author affiliations


Embryoid body (EB) formation closely recapitulates early embryonic development with respect to lineage commitment. Because it is greatly affected by cell-cell and cell-substrate interactions, the ability to control the initial number of cells in the aggregates and to provide an appropriate substrate are crucial parameters for uniform EB formation. Here we report of an ultra-rapid fabrication and culture method utilizing a laser-jet printer to generate closely arrayed honeycomb microwells of tunable sizes for the induction of uniform EBs from single cell suspension. By printing various microwell patterns onto pre-stressed polystyrene sheets, and through heat induced shrinking, high aspect micromolds are generated. Notably, we achieve rounded bottom polydimethylsiloxane (PDMS) wells not easily achievable with standard microfabrication methods, but critical to achieve spherical EBs. Furthermore, by simply controlling the size of the microwells and the concentration of the cell suspension we can control the initial size of the cell aggregate, thus influencing lineage commitment. In addition, these microwells are easily adaptable and scalable to most standard well plates and easily integrated into commercial liquid handling systems to provide an inexpensive and easy high throughput compound screening platform.

Graphical abstract: Tunable shrink-induced honeycomb microwell arrays for uniform embryoid bodies

Back to tab navigation

Publication details

The article was received on 14 Jul 2009, accepted on 18 Sep 2009 and first published on 12 Oct 2009

Article type: Paper
DOI: 10.1039/B914091C
Citation: Lab Chip, 2009,9, 3338-3344

  •   Request permissions

    Tunable shrink-induced honeycomb microwell arrays for uniform embryoid bodies

    D. Nguyen, S. Sa, J. D. Pegan, B. Rich, G. Xiang, K. E. McCloskey, J. O. Manilay and M. Khine, Lab Chip, 2009, 9, 3338
    DOI: 10.1039/B914091C

Search articles by author