Issue 14, 2009

Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes

Abstract

Cells respond to geometrical cues, as well as to biochemical and mechanical stimuli. Recent progress in micro- and nano-technology has allowed researchers to create microbeads, micro-circular islands, and microposts, that can be used to examine the effect of geometrical cues on cellular behavior. Knowledge of changes in cell mechanics and morphology in response to geometric cues is important for understanding the basic behavior of cells during development and pathological processes. Most previous research in this area has focused on cell responses to two-dimensional planar or rectilinear structures. Very few studies have examined cell responses to three-dimensional curved structures because of the difficulty of fabricating such microstructures. Here we describe a novel method for the fabrication of convex and concave microstructures by use of a thin poly(dimethylsiloxane) (PDMS) membrane, SU-8 shadow mask, and negative air pressure without using any complicated silicon processes. We successfully fabricated concave and convex microstructures, with base diameters of 200–300 µm and depth (or height) of 50–150 µm (aspect ratios up to 1 : 0.5), and used these microstructures to study the responses of cultured L929 mouse fibroblast cells and human mesenchymal stem cells. These cells clearly sensed the three-dimensional microscale curvature and actively “escaped” from concave patterns, but not from those which were convex. Thus, it appears that microscale concave structures suppress cell adhesion and proliferation. We hypothesized that this might relate to deformation of the plasma membrane and subsequent opening of membrane channels. We anticipate that our system will be useful for various bio-MEMS (micro electro mechanical system) applications, including formation of uniformly-sized embryoid bodies, embryonic stem cell differentiation, and the fabrication of cell docking devices, microbioreactors, and microlenses as well as cell mechanics study.

Graphical abstract: Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes

Supplementary files

Article information

Article type
Paper
Submitted
24 Nov 2008
Accepted
25 Mar 2009
First published
15 Apr 2009

Lab Chip, 2009,9, 2043-2049

Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes

J. Y. Park, D. H. Lee, E. J. Lee and S. Lee, Lab Chip, 2009, 9, 2043 DOI: 10.1039/B820955C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements