Jump to main content
Jump to site search

Volume 141, 2009
Previous Article Next Article

Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups

Author affiliations

Abstract

We discuss the role of the presence of dangling H-bonds from water or from surface hydroxyl species on the wetting behavior of surfaces. Using scanning tunneling and atomic force microscopies and photoelectron spectroscopy, we have examined a variety of surfaces, including mica, oxides and pure metals. We find that in all cases, the availability of free, dangling H-bonds at the surface is crucial for the subsequent growth of wetting water films. In the case of mica, electrostatic forces and H-bonding to surface O atoms determine the water orientation in the first layer and also in subsequent layers with a strong influence in its wetting characteristics. In the case of oxides like TiO2, Cu2O, SiO2 and Al2O3, surface hydroxyls form readily on defects upon exposure to water vapor and help nucleate the subsequent growth of molecular water films. On pure metals, such as Pt, Pd and Ru, the structure of the first water layer and whether or not it exhibits dangling H-bonds is again crucial. Dangling H-bonds are provided by molecules with their plane oriented vertically, or by OH groups formed by the partial dissociation of water. By tying the two H atoms of the water molecules into strong H-bonds with pre-adsorbed O on Ru can also quench the wettability of the surface.

Back to tab navigation

Article information


Submitted
16 Apr 2008
Accepted
19 Jun 2008
First published
22 Sep 2008

Faraday Discuss., 2009,141, 221-229
Article type
Paper

Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups

M. Salmeron, H. Bluhm, M. Tatarkhanov, G. Ketteler, T. K. Shimizu, A. Mugarza, X. Deng, T. Herranz, S. Yamamoto and A. Nilsson, Faraday Discuss., 2009, 141, 221
DOI: 10.1039/B806516K

Social activity

Search articles by author

Spotlight

Advertisements