Issue 21, 2009

The gas-phase ozonolysis of β-caryophyllene (C15H24). Part I: an experimental study

Abstract

The gas phase reaction of ozone with β-caryophyllene was investigated in a static glass reactor at 750 Torr and 296 K under various experimental conditions. The reactants and gas phase products were monitored by FTIR-spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS). Aerosol formation was monitored with a scanning mobility particle sizer (SMPS) and particulate products analysed by liquid chromatography/mass spectrometry (HPLC-MS). The different reactivity of the two double bonds in β-caryophyllene was probed by experiments with different ratios of reactants. An average rate coefficient at 295 K for the first-generation products was determined as 1.1 × 10−16 cm3 molecule−1 s−1. Using cyclohexane as scavenger, an OH-radical yield of (10.4 ± 2.3)% was determined for the ozonolysis of the more reactive internal double bond, whereas the average OH-radical yield for the ozonolysis of the first-generation products was found to be (16.4 ± 3.6)%. Measured gas phase products are CO, CO2 and HCHO with average yields of (2.0 ± 1.8)%, (3.8 ± 2.8)% and (7.7 ± 4.0)%, respectively for the more reactive internal double bond and (5.5 ± 4.8)%, (8.2 ± 2.8)% and (60 ± 6)%, respectively from ozonolysis of the less reactive double bond of the first-generation products. The residual FTIR spectra indicate the formation of an internal secondary ozonide of β-caryophyllene. From experiments using HCOOH as a Criegee intermediate (CI) scavenger, it was concluded that at least 60% of the formed CI are collisionally stabilized. The aerosol yield in the ozonolysis of β-caryophyllene was estimated from the measured particle size distributions. In the absence of a CI scavenger the yield ranged between 5 and 24%, depending on the aerosol mass. The yield increases with addition of water vapour or with higher concentrations of formic acid. In the presence of HCHO, lower aerosol yields were observed. This suggests that HCOOH adds to a Criegee intermediate to form a low-volatility compound responsible for aerosol formation. The underlying reaction mechanisms are discussed and compared with the results from the accompanying theoretical paper.

Graphical abstract: The gas-phase ozonolysis of β-caryophyllene (C15H24). Part I: an experimental study

Article information

Article type
Paper
Submitted
13 Oct 2008
Accepted
06 Mar 2009
First published
25 Mar 2009

Phys. Chem. Chem. Phys., 2009,11, 4152-4172

The gas-phase ozonolysis of β-caryophyllene (C15H24). Part I: an experimental study

R. Winterhalter, F. Herrmann, B. Kanawati, T. L. Nguyen, J. Peeters, L. Vereecken and G. K. Moortgat, Phys. Chem. Chem. Phys., 2009, 11, 4152 DOI: 10.1039/B817824K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements