In this paper, molecular dynamics simulations have been conducted to study the mechanical stretching of copper nanowires which will finally lead to the formation of suspended liner atomic chains. A total of 2700 samples have been investigated to achieve a comprehensive understanding of the influence of temperature and orientation on the formation of linear atomic chains. Our results prove that linear atomic chains do exist for [100], [111] and [110] crystallographic directions. Stretching along the [111] direction exhibits a higher probability in forming the two-atom contact than that along the [110] and [100] directions. However, for longer linear atomic chains, there emerges a reversed trend. In addition, increasing temperature may decrease the formation probability for stretching along [111] and [110] directions, but this influence is less obvious for that along the [100] direction.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?