Issue 16, 2009

Confinement effects on excitation energies and regioselectivity as probed by the Fukui function and the molecular electrostatic potential

Abstract

When a molecule is placed as a guest inside a zeolite pore, its electronic structure will be altered, among others by the effect of the so-called “confinement”. It has been established that the compression of the molecular orbitals influences a system’s reactivity. In this work we use a simple potential barrier method to quantify the importance of confinement effects on chemical reactivity. In the first part, excitation energies and molecular orbital energy gaps are evaluated for molecules placed in cavities of different sizes, resembling a zeolite pore. Our results for ethylene and formaldehyde reveal an increase in excitation energy and the gap between the occupied and the unoccupied levels. In the case of the larger molecules naphthalene and anthracene, the HOMO–LUMO gap shows very little sensitivity to the confinement. To investigate the role of confinement effects on local aspects of chemical reactivity and on regioselectivity, we evaluated its effect on the Fukui function and the molecular electrostatic potential, reactivity indices that are central in the description of orbital and charge controlled reactions. The results indicate that confinement can influence the regioselectivity and that the reactivity of anions is expected to change, due to the artificial binding of the excess electron.

Graphical abstract: Confinement effects on excitation energies and regioselectivity as probed by the Fukui function and the molecular electrostatic potential

Article information

Article type
Paper
Submitted
11 Nov 2008
Accepted
24 Feb 2009
First published
12 Mar 2009

Phys. Chem. Chem. Phys., 2009,11, 2862-2868

Confinement effects on excitation energies and regioselectivity as probed by the Fukui function and the molecular electrostatic potential

A. Borgoo, D. J. Tozer, P. Geerlings and F. De Proft, Phys. Chem. Chem. Phys., 2009, 11, 2862 DOI: 10.1039/B820114E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements