Issue 10, 2009

1-D hydrogen-bonded organization of hexanuclear {3d-4f-5d} complexes: evidence for slow relaxation of the magnetization for [{LMe2Ni(H2O)Ln(H2O)4.5}2{W(CN)8}2] with Ln = Tb and Dy

Abstract

Heterometallic {3d-4f-5d} aggregates with formula [{LMe2Ni(H2O)Ln(H2O)4.5}2{W(CN)8}2]·15H2O, (LMe2 stands for N,N′-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff-base ligand) with Ln = Gd, Tb, Dy, have been obtained by reacting bimetallic [LMe2Ni(H2O)2Ln(NO3)3] and Cs3{W(CN)8} in H2O. The hexanuclear complexes are organized in 1-D arrays by means of hydrogen bonds established between the solvent molecules coordinated to Ln and the CN ligands of an octacyanometallate moiety. The X-ray structure was solved for the Tb derivative. Magnetic behavior indicates ferromagnetic {W–Ni} and {Ni–Ln} interactions (JNiW = 18.5 cm−1, JNiGd = 1.85 cm−1) as well as ferromagnetic intermolecular interactions mediated by the H-bonds. Dynamic magnetic susceptibility studies reveal slow magnetic relaxation processes for the Tb and Dy derivatives, suggesting SMM type behavior for these compounds.

Graphical abstract: 1-D hydrogen-bonded organization of hexanuclear {3d-4f-5d} complexes: evidence for slow relaxation of the magnetization for [{LMe2Ni(H2O)Ln(H2O)4.5}2{W(CN)8}2] with Ln = Tb and Dy

Supplementary files

Article information

Article type
Paper
Submitted
01 Apr 2009
Accepted
28 May 2009
First published
23 Jun 2009

CrystEngComm, 2009,11, 2078-2083

1-D hydrogen-bonded organization of hexanuclear {3d-4f-5d} complexes: evidence for slow relaxation of the magnetization for [{LMe2Ni(H2O)Ln(H2O)4.5}2{W(CN)8}2] with Ln = Tb and Dy

S. Dhers, S. Sahoo, J. Costes, C. Duhayon, S. Ramasesha and J. Sutter, CrystEngComm, 2009, 11, 2078 DOI: 10.1039/B906539C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements