Issue 8, 2009

Assessment of the chemical changes induced in human melanoma cells by boric acid treatment using infrared imaging

Abstract

Boron is found in everyday foods and drinking water in trace quantities. Boron exists as boric acid (BA) within plants and animals, where low levels have been linked to cancer incidence. However, this correlation is not well characterized. In this study, we examined the chemical and morphological effects of BA on human skin melanoma cells (SK-MEL28) using Fourier Transform InfraRed Imaging (FTIRI) with a Focal Plane Array (FPA) detector. Cells were grown under concentrations of BA ranging from 0 to 50 mM. Cell viability was determined after 1, 2, 3, 5, 7 and 10 days using trypan blue staining. With FTIRI, images of approximately twenty cells per time point per condition were collected. Principal components analysis (PCA) was used to evaluate changes in cell composition, with particular focus on the lipid, protein, and nucleic acid spectral components. Results from trypan blue staining revealed decreased cell viability as BA concentration increased. FTIRI data indicated that the protein and lipid contents (as indicated by the lipid/protein ratio) did not undergo substantial changes due to BA treatment. In contrast, the nucleic acid/protein ratio significantly decreased with BA treatment. PCA results showed an increase in β-sheet protein at higher concentrations of BA (12.5, 25, and 50 mM). Together, these results suggest that high concentrations of BA have an anti-proliferative effect and show signs consistent with apoptosis.

Graphical abstract: Assessment of the chemical changes induced in human melanoma cells by boric acid treatment using infrared imaging

Article information

Article type
Paper
Submitted
07 Jan 2009
Accepted
14 May 2009
First published
10 Jun 2009

Analyst, 2009,134, 1669-1674

Assessment of the chemical changes induced in human melanoma cells by boric acid treatment using infrared imaging

A. S. Acerbo and L. M. Miller, Analyst, 2009, 134, 1669 DOI: 10.1039/B823234B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements