Issue 2, 2009

Bienzymatic-based electrochemical DNA biosensors: a way to lower the detection limit of hybridization assays

Abstract

The use of the alkaline phosphatase (AP) as an enzyme label and the amplification of its analytical response with a diaphorase (DI) secondary enzyme were investigated in an electrochemical hybridization assay involving arrays of carbon screen-printed DNA biosensors for the sensitive quantification of an amplified 406-base pair human cytomegalovirus DNA sequence (HCMV DNA). For this purpose, PCR-amplified biotinylated HCMV DNA targets were simultaneously bound to a monolayer of neutravidin irreversibly adsorbed on the surface of the electrodes and hybridized to complementary digoxigenin-labeled detection probes. The amount of hybrids immobilized on the electrode surface was labeled with an anti-digoxigenin AP conjugate and quantified electrochemically by measuring the activity of the AP label through the hydrolysis of the electroinactive p-aminophenylphosphate (PAPP) substrate into the p-aminophenol (PAP) product. The intensity of the cyclic voltammetric anodic peak current resulting from the oxidation of PAP into p-quinoneimine (PQI) was related to the number of viral amplified DNA targets present in the sample, and a detection limit of 10 pM was thus achieved. The electrochemical response of the AP label product was further enhanced by adding the diaphorase enzymatic amplifier in the solution. In the presence of the auxiliary enzyme DI, the PQI was reduced back to PAP and the resulting oxidized form of DI was finally regenerated in its reduced native state by its natural substrate, NADH. Such a bienzymatic amplification scheme enabled a 100-fold lowering of the HCMV DNA detection limit obtained with the monoenzymatic system.

Graphical abstract: Bienzymatic-based electrochemical DNA biosensors: a way to lower the detection limit of hybridization assays

Article information

Article type
Paper
Submitted
16 Sep 2008
Accepted
12 Nov 2008
First published
03 Dec 2008

Analyst, 2009,134, 349-353

Bienzymatic-based electrochemical DNA biosensors: a way to lower the detection limit of hybridization assays

M. Rochelet-Dequaire, N. Djellouli, B. Limoges and P. Brossier, Analyst, 2009, 134, 349 DOI: 10.1039/B816220D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements